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Fredholm method for scars

S Fishman†, B Georgeot‡ and R E Prange
Department of Physics, University of Maryland, College Park, MD 20742, USA

Received 4 August 1995

Abstract. A new quasiclassical formula for scars is obtained by using the Fredholm method.
We show that it can be expanded into a formula obtained earlier by Agam and Fishman. The
derivation is simple and direct. It is also more rigorous and more general than that of Agam and
Fishman. It also clarifies the remarkable process of resurgence, relating the high-order terms
based on long orbits to the Weyl term whose origin is the zero length orbits.

1. Introduction

The semiclassical or quasiclassical approximation (QCA) has been an important and
constantly used tool since the discovery of quantum mechanics. Although Einstein [1]
presciently realized that there was a fundamental difficulty for classically non-integrable
systems, it is only relatively recently [2–4] that it has been widely appreciated that the
classically chaotic systems require a much more profound treatment than that based on the
example of an integrable system.

The central difficulty is thedivergenceof the series that the semiclassical approximation
produces. Much important work has been devoted in the past few years to overcome this
difficulty, using, e.g., zeta functions [5, 6], cycle expansions [7] or the use of functional
relations and analyticity on the series (in analogy to the Riemann–Siegel method for the
Riemann zeta function) [8]. This variety of methods led to very good results for a particular
class of problem, thespectrumof two-dimensionalclosedsystems (usuallybilliards) which
displayhard chaos. (For hard chaos, all classical orbits are hyperbolically unstable.)

Although it was natural to begin the attack on the divergence problem by taking the
simplest case of the spectrum, there are many important quantities of interest which are
not spectral properties. One of the most remarkable observations of this type is that of
scars [9, 10]. Scars are enhancements, sometimes spectacular, of quantum wavefunctions
around a periodic orbit of the underlying classical system. They are observed in brute
force numerical calculations of wavefunctions as well as experiment [11]. In order to study
this effect, a semiclassical formula for individual wavefunctions using the Berry–Keating
resummation scheme [8] has been developed in [12]. The formula predicts with quite good
accuracy the existence and position of scars from purely classical input [13].

Recently, in order to generalize further the resummation methods, it has been shown in
[14, 15], that use of theFredholm methodapplied to the transfer operator of Bogomolny
[16] gives a general resummation scheme for all quantities given by semiclassical series,
such as scattering amplitudes and Green functions.
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In this paper the Fredholm method is applied to the Wigner function, giving a rather
compact, general and rigorous result. As we shall see, for the case of hard chaos, the result
can be shown to be the same as in [12]. (This paper of Agam and Fishman will be referred
to as AF.) The justification for this new derivation is its simplicity and transparency, as
well as its more rigorous setting. In particular, one sees a quite striking manifestation of
the phenomenon ofresurgence, in which the contribution of the long orbits is qualitatively
and quantitatively related to the contribution of the zero length orbits.

All the equations in this paper are written for the case of two space dimensions. More
general formulae can be written at a small cost of notational simplicity. Whether the higher
dimensional version is useful and accurate remains for future work to assess.

2. Fredholm method for the Green function

Fredholm theory gives the solution of a certain class of integral equations, or alternatively,
the solution of a class of operator equations [17]. AFredholm integral equationof the
second kind is

x(q) = x0(q) + λ

∫
dq ′ K(q, q ′)x(q ′) dq ′ (1)

which is equivalent to an operator equation,x = x0 + λKx. In equation (1), the unknown
functionx(q), and the known functionsx0 andK are defined on some finite domain (e.g. an
interval of reals). If the functions,x0(q), K(q, q ′) are sufficiently nice (e.g. continuous, or
square integrable), theFredholm alternativeholds. That is,either there is a unique solution
of equation (1), with the same nice properties,or the homogeneous version of equation (1)
(x0 ≡ 0) has a solution. There is a discrete set of complex eigenparametersλ = λn for
which the solutionx(q) is not unique.

In operator language,x andx0 are elements of a Hilbert or Banach space, andK is a
(compact) operator on that space. In this terminology, it is said that the inverse operator
[1 − λK]−1 exists except for a discrete set ofλ’s.

The kernelK(q, q ′) can also be regarded as a continuous or infinite-dimensional matrix.
Most of the schemes for numerical solution of equation (1) exploit this by making a
discretization or truncation, which reduces the problem to inversion of a finite matrix.
In this case [1 − λK]−1 can be expressed as a ratio

1

1 − λK
= N (λ)

D(λ)
. (2)

If K is approximated as anN × N matrix, the determinantD(λ) = det(1−λK) is an
N th-order polynomial inλ whoseN zeros give an approximation to theλn. The numerator
is a polynomial of orderN − 1.

The main result of Fredholm theory is that, whenK is a compact operator, the
expression (2) continues to hold, but withD(λ) an entire function of λ. i.e. it is a series
absolutely convergentfor all |λ| < ∞ rather than a polynomial. Similarly, the numerator is
an operator valuedentire function ofλ. We give the explicit expressions for the Fredholm
determinantD and the numerator operatorN in terms of the kernelK below.

We wish to apply this method to the energy Green function,G(r, r′, E), which can be
considered as the inverse operator [E−H + iη]−1, whereH is the Hamiltonian, i.e.

G(r, r′, E) =
〈
r

∣∣∣∣ 1
E − H + iη

∣∣∣∣ r′
〉
. (3)

Once we obtainG it is straightforward to find the Wigner distribution.



Fredholm method for scars 921

In QCA the (outgoing wave) Green function [18] is

G(r, r′, E) = 1

(2π ih̄)1/2

1

ih̄

∑
class traj

1√
vv′

√∣∣∣∣ ∂2S

∂y∂y ′

∣∣∣∣ei
h̄
S(r,r′,E)−iν π

2 . (4)

The sum is over all classical trajectories going fromr′ to r at energyE. The actionS

is the integral
∫

p · dr along a trajectory;∂2S/∂y∂y ′ is the cross derivative of the action
with respect to the coordinates perpendicular to the trajectory atr andr′ andv, v′ are the
speeds atr, r′. The indexν counts the conjugate points along the trajectory. This sum does
not converge. Indeed, it could not be a good approximation to equation (3) if it did, since
the exact Green function must be infinite at an eigenenergy. We may consider it, however,
for energiesE with a sufficiently large positive imaginary part and eventually analytically
continue it to real energy.

In two or more dimensions (the real part of)G(r, r, E) is infinite, even if E is
not at an eigenenergy. The Gutzwiller trace formula [2], is obtained by considering
Tr Im G = Im

∫
G(r, r,E) dr.

An intuitive trick to get an integral equation for equation (4) is to use aquantum surface
of section, first introduced by Bogomolny [16]. This may be rigorously justified in most
cases by generalizing a result of Prozen [19], which in turn is a generalization of a method
of Doron and Smilansky [6]. ThePoincaré surface of section(SS) is a very common tool in
classical mechanics: we specialize it slightly to be a phase space surface whose configuration
space has one dimension less than the original configuration space, and whose phase space
component is the momentum conjugate to the configuration space. It is most conveniently
chosen such that a typical classical trajectory will cross it after a finite time. Originally
[16], the SS was defined only classically and semiclassically, by use of an operator, called
the transfer operatorT which acts on the space of functions defined on the configuration
part of theSS. It can be thought of as a kernel,T (q, q ′), relating two points on theSS by
means of the classical trajectories between these points. A very important property of this
operator is that it is approximately finite (of finite rank), i.e. very close to a finite matrix,
and approximately unitary for closed systems [16].

In [14, 15] it was shown that for many quantities, such as Green functions or scattering
amplitudes, the semiclassical series is essentially an approximation of the inverse[1 − T ]−1.
Therefore, it is natural to apply theFredholm methodsince T is typically a compact
operator, that is,T (q, q ′) is continuous or square integrable. Here the aim is to apply it
to the Wigner transform of the resolvent to get a resummed formula for the wavefunctions.
The first step is to write the Green function, or resolvent, in this formalism.

The semiclassical transfer operator is given by Bogomolny [16] as

T (q, q ′) = 1

(2π ih̄)1/2

∣∣∣∣ ∂2S

∂q∂q ′

∣∣∣∣1/2

e
i
h̄
S(q,q ′,E)−iν π

2 . (5)

Hereq andq ′ label distance along theSS. The SS is one dimensional, i.e. one less than the
two-dimensional space of the original problem.S(q, q ′) is the action integral of the orbit of
energyE leavingq′ and returning for the first time to the surface of section atq. We have
shown just one such contribution, since it is usually possible and convenient to choose the
SS so that there is at most one orbit contributing toT (q, q ′). Otherwise there will be a sum
over those classical trajectories of ‘first return’ going fromq ′ to q. (It is customary to insist
that the first return be in the ‘positive’ direction, and that the orbit leaveq ′ in the ‘positive’
direction. We shall also count asSS crossings only those in the positive direction). It is
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easy to check [16] that

T 2(q, q ′′) =
∫

T (q, q ′)T (q ′, q ′′) dq ′ = 1

(2π ih̄)1/2

∑
class traj

∣∣∣∣ ∂2S

∂q∂q ′′

∣∣∣∣1/2

e
i
h̄
S(q,q ′′,E)−iν π

2 (6)

where the sum is over classical trajectories ofsecond returngoing fromq ′ to q, provided
the integral is performed by the stationary phase approximation, S8. There will typically
be more than one point of stationary phase, thus more than one classical trajectory for
trajectories of second return, if the classical dynamics is chaotic. (The number of such
trajectories returningn times then grows exponentially withn.)

We define closely related kernels by

V+(q ′, r′) = 1√
ih̄

1√
2π ih̄

1√
v′

∣∣∣∣ ∂2S

∂q ′∂y ′

∣∣∣∣1/2

e
i
h̄
S(q ′,r′,E)−iν π

2 (7)

where we have assumed there is just one classical trajectory going from a pointr′ anywhere
in the system to a pointq ′ on theSS . The trajectory must also arrive at theSS for the first
time in the positive direction. The derivatives of the action are taken with respect toq ′ and
the coordinate orthogonal to the trajectory atr′. Similarly one can define

V−(r, q) = 1√
ih̄

1√
2π ih̄

1√
v

∣∣∣∣ ∂2S

∂y∂q

∣∣∣∣1/2

e
i
h̄
S(r,q,E)−iν π

2 , (8)

where the classical trajectory goes from a point of theSS q to a pointr anywhere in the
system, this time leaving theSS in the positive direction, and never crossing it again. These
operators are illustrated in figure 1.

V+ and V− are operators which relate a point of the system to or from theSS. It is
easy to see that

∫
V−(r, q)T n(q, q ′)V+(q ′, r′) dq dq ′, calculated in S8, corresponds to a

sum over classical trajectories crossing theSS exactlyn + 1 times while going fromr′ to
r. Moreover, the prefactors are exactly the same as in equation (4). Therefore one can

Figure 1. An orbit in a potential (schematically indicated by contour lines). The orbit starts at
point r′ and passes through the surface of section atq ′, again atq, and ends atr, corresponding
to V+(q ′, r′)T (q, q ′)V−(r, q).
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enumerate all the trajectories in equation (4) with respect to the number of times they cross
the SS. One obtains

G(r, r′, E) = G0(r, r′, E) +
∞∑

n=0

∫
V−(r, q)T n(q, q ′)V+(q ′, r′) dq dq ′ (9)

whereG0 corresponds to the direct trajectories betweenr and r′, which do not cross the
SS. We say that an orbit coming from the termT n hasSS lengthn+1. Direct orbits haveSS

length zero, and orbits from the termV−V+ haveSS length one. We denote theSS length
of an orbitp by the integerLp. The expression (9) contains the sum of a geometric series∑

T n which is formally equal to[1 − T ]−1.
The Fredholm determinantD(λ) for [1−λT ] is given by the absolutely convergent

series [17]

D(λ) =
∞∑

n=0

λnDn (10)

where

Dn = (−1)n

n!

∫ ∫
SS

dq1 . . . dqn det

∣∣∣∣∣∣∣
T (q1q1) · · · T (q1qn)

...
. . .

...

T (qnq1) · · · T (qnqn)

∣∣∣∣∣∣∣ . (11)

Similarly, one expresses

N (λ) =
∞∑

n=0

λnNn (12)

whereNn is an operator corresponding to the kernel

Nn+1(q, q ′) = Dn+1δ(q − q ′) + (−1)n

n!

×
∫ ∫

SS
dq1 . . . dqn det

∣∣∣∣∣∣∣∣∣
T (q, q ′) T (q, q1) · · · T (q, qn)

T (q1, q
′) T (q1, q1) · · · T (q1qn)

...
...

. . .
...

T (qn, q
′) T (qn, q1) · · · T (qnqn)

∣∣∣∣∣∣∣∣∣ . (13)

As D = det(1 − λT ), the theory shows that the well known equality between the
logarithm of the determinant of a matrix and the trace of its logarithm generalizes to this
case, i.e.

Dn = −1

n

n∑
r=1

σrDn−r (14)

where

σr = Tr T r =
∫ ∫

SS
dq1 . . . dqr T (q1, q2) . . . T (qr , q1) . (15)

Also using the fact thatN (λ) = D(λ)/(1 − λT ) one has

Nn =
n∑

r=0

DrT
n−r . (16)

If T is of finite rank, that is, it can be expressed as a bilinear sum ofN functions, it is
equivalent to a finite matrix of sizeN . Then the series will be truncated after the term of
index N for D, and after the term of indexN − 1 for N .
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Using the Fredholm result, we have

G(r, r′, E) = G0(r, r′, E) + 1

D(E)

∫
V−(r, q)N(q, q ′; λ = 1)V+(q ′, r′) dq dq ′ (17)

whereD(E) is the Fredholm determinant atλ = 1 regarded as a function ofE.
One simple feature of (17) should be noticed. Since by (16), the operator part ofN is

just a power ofT , the
∫∫

dq dq ′ integrals in (17) can be done by S8 with the result that
exactly the same expressionsoccur in (17) as occur in (4), but multiplied by factorsDs/D.
Define

Gr

(
r, r′, E

) = 1

(2π ih̄)1/2

1

ih̄

∑
p,Lp=r

1√
vv′

√
∂2Sp

∂y∂y ′ e
i
h̄
Sp(r,r′,E)−iν π

2 . (18)

Then

G(r, r′, E) = G0(r, r′, E) + 1

D(E)

∞∑
n=0

n∑
s=0

Dn−s(E)Gs+1(r, r′, E) . (19)

If the series
∑∞

s=0 Gs+1 converges, then it is legal to change the order of then and s

sums in (19), leading toG = G0 + ∑∞
s=0 Gs+1D

−1 ∑∞
n=s Dn−s = ∑∞

s=0 Gs . Therefore, we
see that the Fredholm method is just a ‘trivial’ regrouping of terms in the original series.
This regrouping, however, guarantees convergence, and converts a divergent series into a
convergent one!

3. Resurgence

The operatorT is typically of finite rank inQCA. In fact, consider the expansion

T (q, q ′) =
∞∑

r,s=−∞
ϕr(q)Trs ϕ̄s(q

′) (20)

where theϕr ’s are a complete orthonormal set on the (configuration part of) theSS. Suppose,
for example, thatϕr(q) = √

1/L exp(−2π irq/L) whereL is the length of theSS. Then,

Trs =
∫ ∫

dq dq ′ 1

L
e−2π i rq

L
1

(2π ih̄)1/2

∑
class traj

∣∣∣∣ ∂2S

∂q∂q ′

∣∣∣∣1/2

e
i
h̄
S(q,q ′,E)−iν π

2 e2π i sq′
L . (21)

The leading orderQCA approximation toTrs requires the S8 conditions 2πr/L = p/h̄ ≡
(∂S(q, q ′)/∂q)/h̄ and 2πs/L = p′/h̄ ≡ −(∂S(q, q ′)/∂q ′)/h̄. Sincep, p′ are the classical
momenta conjugate toq, q ′, and since energy is conserved, thus bounding|p| and

∣∣p′∣∣, it
is seen that a leading order contribution will only occur for|r| < L |p| /h. If the maximum
momentum corresponds to a minimum wavelengthλmin it is found that theQCA dimension
of T is N × N whereN = 2L/λmin.

Furthermore,T is unitary in the semiclassical approximation (i.e. the corrections to
unitarity are order ¯h2) [16]. It is instructive to be more precise on this point. The preceding
argument shows thatT has rankN , which means that there is a representation (e.g.
the momentum representation), where all the non-zero elementsTrs lie in an (N × N)-
dimensional space. (The rank of the matrixN may actually be less than 2L/λmin,
which is an upper bound.) LetP be the projection operator onto this space. Then
T (1 − P ) and (1 − P )T vanish in QCA. The ‘unitarity’ property is more precisely
T †T = TT † = TPT † = P . Remark as well thatPV + = V+ andV− = V−P . We refer
to this property of unitarity restricted to the subspace defined byP simply as unitarity.
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In other representations forT , e.g. the discretized coordinate representation, this
property will not be so obvious. In that case, in numerical practice,T will have N

eigenvalues approximately on the unit circle, with the rest quasiclassically small. There
also may be an eigenvalue of intermediate magnitude, since the matrix must change size
as a function of energy. However, one may replace the approximateT by one exactly
satisfying the unitarity property, making quasiclassical errors only. We suppose that this
has been done in the sequel. We mean byT −1 in this case, the operator which is inverse
to T on the subspace defined byP , and which vanishes elsewhere.

The unitarity property implies that the second half of the terms in the finite series for
D(λ) and N (λ), which are usually the most difficult to compute, can be expressed as a
function of the first half. This greatly simplifies the computations, and is similar to the
property of resurgenceof an infinite series, which in mathematics relates the high-order
terms of an infinite series to the low-order ones. This property was first exploited in the
case of the quasiclassical series in [8]. Using unitarity, relationD(λ) = det(1 − λ̄T −1) =
D(λ̄−1)λ̄Ne−i8 has been established [16]. Here ei8 = det(−T + 1− P ). (This determinant
is (−1)N times the product of the eigenvalues ofT which are on the unit circle. The term
1 − P is the projector on the space whereT vanishes.) This impliesDn = D̄N−nei8. The
phase is known to be8 = 2πN whereN (E) is the smoothed (Weyl) spectral staircase
function, i.e. the number of energy levels less thanE.

The relation forN (λ) was shown in [14]; one uses the fact thatN (λ) = D(λ)/(1−λT )

so PN (λ)† = −D̄[λ̄−1T /(1 − λ̄−1T )] = −λ̄N−1T e−i8N (λ̄−1). Expanding in powers of
λ̄ and equating coefficients gives

PNn = −T †ei8N
†
N−n−1 . (22)

In particular, we can expressPNN−1 = −T †ei8.
The denominator is

D =
N∑

n=0

Dn . (23)

We takeN odd, N = 2N1 + 1, to be specific. The formulae for evenN are similar.
Applying the relation between high-order and low-order terms gives

D =
N1∑
n=0

Dn +
2N1+1∑

n=N1+1

ei8D∗
N−n (24)

i.e

D = ei8/2
N1∑
n=0

(e−i8/2Dn + ei8/2D∗
n) . (25)

If

1̃ ≡ e−i8/2
N1∑
n=0

Dn (26)

then

e−i8/2D ≡ 1 = 1̃ + 1̃∗ = 2 Re1̃ (27)

i.e. thespectral determinant1 [8] is manifestly real.
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One can do exactly the same for the numerator, using the relation (22). Then (restricting
ourself to the space whereT is unitary)

N =
2N1∑
n=0

Nn =
N1−1∑
n=0

Nn −
2N1∑

n=N1

T †ei8N
†
N−n−1 . (28)

Here the sum terminates atN − 1 and notN , in contrast with the determinant.
Inserting equation (28) into expression (17), we see that we must findV−T †:∫

V−(r, q)T †(q, q ′) dq = 1

(2π ih̄)

1√
ih̄

×
∫

1√
v

∣∣∣∣ ∂2S

∂y∂q

∣∣∣∣1/2

e
i
h̄
S(r,q,E)

∣∣∣∣ ∂2S

∂q∂q ′

∣∣∣∣1/2

e− i
h̄
S(q ′,q,E) dq (29)

where we have assumed as before that just one such short classical trajectory exists. The
S8 approximation selects the path such that

∂S(r, q)

∂q
− ∂S(q ′, q)

∂q
= p(q ′, q) − p(r, q) = 0 . (30)

Thus, the classical path starting atq and continuing toq ′ begins with the same momentum
as the path starting atq and going tor (note that here we discuss the meaning ofT †, not
T , so the geometry of figure 1 does not apply). Since the dynamics is deterministic, this
singles out the path (for simplicity assumed unique), which begins atq then passes through
r on its way toq ′. The actions in the part betweenr and q of the paths exactly cancel,
leaving only the (negative) action betweenq ′ andr. One can check that

(∂2S(r, q)/∂y∂q)(∂2S(q ′, q)/∂q ′∂q)

(∂2S(r, q)/∂2q) − (∂2S(q ′, q)/∂2q)
= ∂2S(q ′, r)

∂y∂q ′ . (31)

This leads to the interesting result

i
∫

V−(r, q)T †(q, q ′) dq = V
†
+(r, q ′) . (32)

A similar S8 computation shows that

i
∫

T †(q ′, q)V+(q, r) dq = V
†
−(q ′, r) . (33)

It is convenient to havetwo powers ofT † rather than one in the resurgent terms, i.e.
the second term on the right-hand side of (28). This is achieved by using

Nn = Dn1 + TN n−1 (34)

for n 6= 0 andN0 = D01.
This gives

N =
2N1∑
n=0

Nn =
N1−1∑
n=0

Nn −
N1∑
n=1

T †ei8(T †N †
n−1 + D̄n) − T †ei8N

†
0 (35)

=
N1−1∑
n=0

(Nn − (T †)2ei8N †
n) −

N1∑
n=0

T †ei8D̄n . (36)

Using this in (17), we find (withλ = 1) that

G(r, r′, E) = G0(r, r′, E) + gL(r, r′, E) + gR(r, r′, E) . (37)
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Figure 2. Orbits in the resurgent termgR . The orbit fromq2 to q1 is shown, labelled with the
closed arrowheads. The part fromr to q1, labelled by the open arrowhead, is cancelled by the
factorV †

+(r, q1). Similarly, the orbit fromr throughr′ to q2 is shown. Assuming time reversal
in not an invariance, the orbit fromr to r′ is not the time-reversed orbit fromr′ to r.

This formula has three terms. The first corresponds to direct trajectories fromr′ to r,
the second to longer orbits going fromr′ to r while crossing theSS some positive number
of times. The third, as we shall see, is a rather spectacular example of resurgence, since on
the one hand, it comes from the longest orbits, and on the other hand, its contribution is
almost the same as that of the direct orbits inG0.

The third term in (37) is

gR ≡ −1̃∗

1

∫
V−(r, q)T †(q, q ′)V+(q ′, r′) dq dq ′ (38)

which is by use of (32)

gR = i
1̃∗

1

∫
V

†
+(r, q ′)V+(q ′, r′) dq ′ . (39)

The integral is again performed in S8. There are two stationary phase points and we
write their contributions as

gR = −1̃∗

1
[gR1 + gR2] . (40)

These S8 points have the following geometric meaning, which is illustrated in figure 2.
Consider the direct orbit fromr′ to r (which is assumed unique). Continue this orbit to the
point q1 where it first crosses the surface of section in the positive direction. The action of
the factorV+(q1, r

′) is S(q1, r
′) while the action of the factorV †

+(r, q1) is −S(q1, r). This
gives the total action factor of the S8 point q1 as e

i
h̄
S(r,r′). This of course is just the action

factor of the direct orbit betweenr′ andr. The prefactors work out to give

gR1(r, r′, E) = G0(r, r′, E) . (41)

The second contribution is from the pointq2 which is found as the first intersection with the
SSof the continuation of the orbit which passes fromr throughr′. Note that in the absence
of time-reversal invariance, this orbit isnot the time reversal of the orbit fromr′ to r. The
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S8 point q2 is found to lead to an action factor e− i
h̄
S(r′,r). Only if there is time-reversal

invariance isS(r, r′) = S(r′, r). The prefactor works out to give

gR2(r, r′, E) = −G∗
0(r

′, r, E) . (42)

ThusgR, the contribution of the longest orbits which do not completely cancel against each
other (except for the important spectral determinant factor) can be expressed in terms of
short, direct orbits, up to corrections which are quasiclassically small.

Similarly, we may write the contribution of intermediate length orbits. The second term
in (37) is

gL(r, r′, E) = 1

D

p−1∑
n=0

∫ ∫
V−(r, q)

[
(Nn − ei8T −2N †

n)(q, q ′)
]
V+(q ′, r′) dq dq ′ . (43)

Using equations (32) and (33) one finds that

V−
(
T †)k+2

V+ = − [
V−T kV+

]†
. (44)

With the help of this relation one finds

gL =
N1−1∑
n=0

(gn + g†
n) (45)

where

gn(r, r′, E) = 1

D

∫ ∫
V−(r, q)Nn(q, q ′)V+(q ′, r′) dq dq ′ . (46)

We have thus found that the longest orbits are cancelled to quasiclassical accuracy by
combinations of shorter ones, while orbits of length betweenN/2 andN are expressed in
terms of orbits of length between 0 andN/2. These cancellations are, in this perspective,
a nice property of determinants. For a more physical insight into this cancellation, see
[7, 15, 20].

4. The Wigner distribution

The Green function has now been put in a resummed form and we may take its Wigner
transform. The Wigner transform ofG is

W(x, E) =
∫

dr′ e− i
h̄
p·r′

G(r + 1
2r′, r − 1

2r′, E) (47)

wherex = (p, r). The QCA Green function (4) is used in this expression. Under these
assumptions the Wigner transform of (4) that is performed in the semiclassical approximation
yields

W(x, E) =
∑

class traj

W(m.r.)(x, E) (48)

where the sum is restricted to the classical trajectories that satisfy the midpoint rule
x = 1

2(xf + xi) where xf and xi are the final and initial points in phase space,
respectively, [10]. The terms on theRHS are the Wigner transforms of the corresponding
terms on theRHS of (4). Grouping terms according to the number of crossings of theSS we
introduce the semiclassical Wigner transform of (18)

W ′
r (x, E) =

∑
class traj

W(m.r.)(x, E) (49)
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where the sum is restricted to orbits that cross theSS r times and satisfy the midpoint rule.
The resulting expression for the Wigner function corresponding to (19) is

W(x, E) = W0(x, E) + 1

D(E)

∞∑
n=0

Un(x, E) (50)

where

Un(x, E) =
n∑

r=0

Dn−r (E)W ′
r+1(x, E) (51)

where the prime was omitted forW0.
In the semiclassical approximation the sum (19) terminates at some finiten = N − 1.

Taking, as in section 3,N = 2N1 + 1 odd, we can obtain an approximate expression for
the Wigner function in terms of a finite sum over crossings of theSS. It is easy to see that
if W ′

r (x, E) is the Wigner transform (47) ofGr(r, r′, E), then the Wigner transform of
G∗

r (r
′, r, E) is W ′∗

r (x, E), where∗ denotes complex conjugation. If the Wigner transform
of G0 is W0 then the Wigner transforms ofgR1 and gR2 are W0 and W ∗

0 , respectively.
Therefore the expression for the Wigner function resulting from (37), (40) and (45) is

W(x, E) = W0(x, E) + 1

D

N1∑
n=0

n∑
r=0

[
Dn−rW

′
r+1(x, E) + ei8D∗

n−rW
′∗
r+1(x, E)

]
− 1

D

[
W0(x, E) − W ∗

0 (x, E)
]

ei8
p∑

n=0

D∗
n . (52)

First we note that the contribution from the short orbits is

WR
0 (x, E) = W0(x, E) − 1

D

[
W0(x, E) − W ∗

0 (x, E)
]

ei8
p∑

n=0

D∗
n (53)

where the last term results from the resurgent orbits. One finds easily that

WR
0 (x, E) = 1

1

[
W0(x, E)1̃ + W ∗

0 (x, E)1̃∗
]

(54)

where1 = De−i8/2 (see equation (27)) is the spectral determinant, while1̃ is defined by
(26).

The resulting formula for the Wigner function is

W(x, E) = WR
0 (x, E) + 1

1

N1∑
n=0

[
e−i8/2Un(x, E) + ei8/2U ∗

n (x, E)
]

(55)

where Un is defined by (51). This expression is manifestly real. We remark that the
resurgent terms for both very short and longer orbits are needed to achieve this reality.

The Wigner functionWα of an eigenstateα with energyEα is found from the residues
of (see e.g. AF, equation (3.3)):

W(x; E) = h2
∑

α

Wα(x)

E + iη − Eα

. (56)

The resulting Wigner function of the eigenstateα is

Wα(x) = 1

h21′(Eα)

{[
W0(x, E)1̃ + W ∗

0 (x, E)1̃∗]
+

N1∑
n=0

[
e−i8/2Un(x, E) + ei8/2U ∗

n (x, E)
]}

E=Eα

(57)
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where1′(Eα) is the derivative of the spectral determinant with respect to the energy atEα

where it vanishes.
We turn now to a more detailed calculation of the contribution of the short orbits, i.e.

those that do not cross theSS. This is just the Wigner transform (47) ofG0 defined by (9),

W0 =
∫

dr′ e− i
h̄
p·r′

G0(r + 1
2r′, r − 1

2r′, E) . (58)

It takes the explicit form [10],

W0(x; E) = −iπ {A(x, E + iη) − iB(x, E + iη)} (59)

where

A(x, E) = 2

h̄| ẍ∧ẋ
h̄

|1/3
Ai

(
2[H(x) − E]

(h̄2ẍ ∧ ẋ)1/3

)
(60)

and

B(x, E) = 2

h̄| ẍ∧ẋ
h̄

|1/3
Gi

(
2[H(x) − E]

(h̄2ẍ ∧ ẋ)1/3

)
(61)

whereH is the Hamiltonian while the phase space velocity isẋ and the acceleration is̈x.
The Airy function Ai(z) and the function Gi(z) are defined as the real and the imaginary
parts of the integral

1

π

∫ ∞

0
dt ei( 1

3 t3+zt) (62)

respectively.A(x, E) is approximately a delta function of energy conservation,δ(H(x)−E),
but in addition it describes the pattern of Airy fringes asx moves off the energy surface.
Using equation (54) one finds

WR
0 (x, E) = π

1
[A(x, E)1i − B(x, E)1] (63)

where1i = 2 Im1̃. The second term in this equation does not contribute to the expression
for Wα(x), since1 vanishes on the spectrum.

5. Scars

The discussion so far was very general. It does not depend on what type of chaos, if
any, exists in the underlying dynamical system. However, motivated by the existence of
eigenstates,scars, which apparently are peaked on periodic orbits, we want to express the
results as a sum over periodic orbits. This has so far only been done for the hard chaos case,
although the results can no doubt be extended to include non-isolated orbits and integrable
systems. Mixed chaos systems remain a serious challenge. In particular, it will be shown
that (57) is equivalent to the result obtained by AF [12, 13].

Semiclassically, the dominant contribution is from regions wherer′ is small, so the
orbits appearing begin and end near the phase space pointx. On the assumption that such
approximately closed orbits are well represented by small deviations fromperiodic orbits
passing nearx, it has been shown by Berry [10] that

W(x, E) = W0(x, E) +
∑

j

Wj (x, E) (64)

whereWj is the contribution of a periodic orbit andW0 is the Weyl term coming from short
direct trajectories. As discussed by [21], this approximation is likely to be good for hard
chaos, but not so good for mixed chaos.
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Berry’s formula is not completely satisfactory since it does not converge for physical
E. It also contains explicit terms which represent repetitions of primitive periodic orbits.
Voros [5] demonstrated how explicitly summing out these repetitions helped to deal with
the divergence difficulty. The contributions coming from periodic orbits will be described
in what follows.

In particular, the contribution of thej th orbit in (64), that consists ofap repetitions of
the primitive orbitp, is [10]

Wj(x, E) = Wap
(x, E) = −4π iA(x, E)

e
i
h̄
(Sj (E)+Yj )√

det(Mj + 1)
. (65)

The monodromy matrix of the orbitMj = (
Mp

)ap has the eigenvalues, in two dimensions,
e±apup whereup is the Lyapunov exponent of the primitive orbit, andap is the number of
repetitions. For hard chaos all orbits are hyperbolic (without reflection, for simplicity). The
action (that contains the Maslov index) isSj = aqSp and

Yj = X̃J
Mj − 1

Mj + 1
X . (66)

HereX =(
δp⊥
δr⊥

)
is the vector distance from the phase space pointx to the orbitp andX̃ is

its transpose. The symplectic matrixJ is
( 0

1
−1
0

)
. The factor e

i
h̄
Y gives the fringes as the

point x goes away from the orbit. It is assumed that orbits passing far fromx will give
such violent oscillations from this factor that they effectively can be neglected.

By assuming that theSShas been conveniently chosen, one can suppose that all periodic
orbits cross theSS. The Weyl termW0 is the contribution of direct trajectories in (37). The
contribution from long orbits is

W ′
r (x, E) =

∑
j

Wj (x, E) (67)

where the sum is now restricted toperiodic orbits that cross theSS r times. Grouping the
terms in this way guarantees convergence.

We wish to display the contribution of a given primitive orbit however. Introduce the
notation to label composite orbits,

µ = {
m1, m2, . . . mp, . . .

}
(68)

wheremp is the number of repetitions of thepth primitive periodic orbit. All but a finite
number ofm’s vanish. The composite length, namely the number of crossings of the surface
of section, is

Lµ =
∑
p

mpLp (69)

and the composite action is

Sµ =
∑
p

mpSp . (70)

The composite quantities are thus expressed in terms of the primitive quantities. The orbital
structure ofW ′

r is special, as just one orbit occurs in any given termWj .
The terms inW ′

r can be grouped now in a different way. We can write it as

W ′
r =

∑
p

∑
ap

Wap
(71)

wherep labels the primitive periodic orbits andap their repetitions. The constraint

apLp = r (72)
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is imposed on the orbits in (71).
In order to explore the contribution of a specific primitive periodic orbit to the Wigner

function it is instructive to group the terms in (50), (51) according to primitive orbits. The
expansion coefficients of the Fredholm determinantDn contain only composite orbits of
lengthn. We introduce the notationµ(n) to label the general composite orbit of lengthn,
i.e.

Lµ(n) = n . (73)

The form of the terms enteringDn of (11) implies that

Dn =
∑
µ(n)

Cµ(n)e
i
h̄
Sµ(n) . (74)

The coefficientsCµ(n) can be explicitly found with the help of the recursion relation
equation (14) and the well known explicit expression for the tracesσr in terms of periodic
orbits in the case of hard chaos. The resulting form is,Cµ = ∏

p Cp,mp
, whereCp,0 = 1

and formp > 0,

Cp,mp
=

∑
{mp}

(−1)νp

νp−1∏
i=0

1

mp,i

1√
| det(M

mp,i−mp,i+1
p − 1)|

. (75)

The sum in (75) is over partitions of the integermp, where a partition is a set of integers
mp,i , i = 0..vp, such thatmp,0 = mp, mp,νp

= 0, andmp,i > mp,i+1. Note thatCp,mp

satisfies the recursion relation

Cp,mp
= − 1

mp

mp∑
r=1

1√∣∣det(Mr
p − 1)

∣∣Cp,mp−r . (76)

With the help of this decomposition (51) takes the form

Un =
n∑

r=0

∑
µ(n−r)

Cµ(n−r)e
i
h̄
Sµ(n−r)

∑
p

∑
ap

Wap
(77)

with the restriction that

Lpap = r + 1 . (78)

Because of equation (78) the sum overr can be replaced by a sum overap. Then
equation (77) can be rearranged to take the form

Un =
∑
p

Up
n (79)

with

Up
n =

∑
ap

∑
µ(n−r)

Cµ(n−r)e
i
h̄
Sµ(n−r)Wap

. (80)

Since all the sums in question are finite there is no problem with the interchange of the
order of the various summations. The equations (50), (79) and (80) form a ‘scar’ formula,
namely an expression for the Wigner function as a sum over primitive periodic orbits. This
is the main result of this paper.
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In the appendix we manipulate (80) to show that it agrees with the result of AF.
Substitution of (A20), (79) and (63) in (55) yields,

W(x; E) = π

1
[A(x, E)1i − B(x, E)1]

−8πA(x, E)

1
Re

[
i
∑
p

∑
µ(n+16N1+1)

∞∑
k=0

c(p,k)
µ e−iπN g(k)(bp)e

i
h̄
(Sµ+Sp)e

i
h̄
X̃RpX

]
(81)

whereN = 8/2π is the integrated smoothed density of states, whileRp, bp and g are
defined in the appendix. Since the sum (55) is restricted ton 6 N1 the sum overµ is
restricted to orbits crossing theSSN1+1 times. The formula for an eigenstate corresponding
to (57) is

Wα(x) = πA(x, Eα)

h21′(Eα)

{
1i − 8 Re

[
i
∑
p

∑
µ(n+16N1+1)

∞∑
k=0

c(p,k)
µ e−iπN g(k)(bp)

×e
i
h̄
(Sµ+Sp)e

i
h̄
X̃RpX

]}
E=Eα

. (82)

This result is similar to the one found by AF (corrigendum in [12]). The difference is that
the cut-off here is sharp while the cut-off by the error function Erfc used by AF is smooth.
(Note for comparison that Erfc(−∞) = 2.)

6. Conclusions

In this paper we have obtained formulae for the Wigner functions of the eigenstates of a
closed system, as well as for the Wigner transform of the resolvent operator. These formulae
are at several levels of generality and approximation. Formula (50) can be regarded as
exact, if an exact version of the transfer operatorT is employed. In principle it could be
implemented numerically, although it is probably not the recommended procedure for exact
numerical calculation.

If T makes quasiclassical errors, this formula in principle provides a way to calculate
the Wigner functions for a general closed system. Once the quasiclassical approximation
is made, it can be further exploited by using the fact thatT is quasiclassically of finite
rank and is unitary, except for quasiclassical errors, on the space where it does not vanish.
This gives the most general, compact formula, equation (52) for the Wigner functions in
the quasiclassical approximation.

The short orbit (Weyl) contributions can be worked out in detail in the general case.
Also the contribution of the long orbits which by resurgence are like the short orbits can
be carried out. This allows a general formulation of the contribution of the Weyl term, at
least if the energy levels are independently known. It is found [22] that this contribution
dominates the wavefunctions, with the contributions of longer orbits making relatively small
corrections. In general, the spectral determinant1 and its components̃1 can be found, if
necessary, by diagonalization of the finite dimensionalT operator. Therefore, most of the
weight of the wavefunction for arbitrary closed systems can be found by use of equation (54).

Practical quasiclassical calculations for the spectrum which are based completely on
orbits have so far only been possible for certain special systems. These include hard chaos
systems, in which all phase space points are hyperbolically unstable. Certain corrections and
extensions can be made. For example, some non-isolated orbits can be included. Diffraction
[23], refraction and ray splitting [24] effects can also be accounted for. Integrable systems
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can also be handled by related methods [25]. All these methods are based on the periodic
orbits of the system. They can be regarded as applications of the Fredholm method, used
in the paper, to the calculation of the spectral determinant1 and the Fredholm coefficients
Dn in various special cases.

These results can be used in our formulae. However, part of the formula, namely
W ′

r (x, E), is expressed in terms of ‘midpoint rule’ orbits, which depend on the phase space
point x at which the Wigner function is evaluated. Since finding the periodic orbits tends
to be the most difficult part of the calculation, it is likely currently impractical to implement
the even more difficult problem of finding ‘midpoint rule’ orbits in the general case.

However, for hard chaos, it is known how to express midpoint rule orbits in terms of
nearby periodic orbits. Using these results, we obtain the formulae equations (79), (80)
which are in a form that could be numerically implemented, given a knowledge of the
periodic orbits. It is also a ‘scar’ formula since it is expressed as a sum of contributions
each of which is associated with a given primitive periodic orbit. The contribution of such
a term is large only near the orbit. Thus, it is possible to study how the eigenstates are
‘scarred’ by these orbits, that is, how they may be concentrated to some extent in the
neighbourhood of such an orbit.

We have not used this formula for numerical calculations however, since an essentially
equivalent formula has already been obtained and evaluated by AF. Equation (82) is (almost)
the formula of AF. It was originally obtained by direct generalization of the techniques of
Voros [5] and Berry and Keating [8] to the calculation of the Wigner functions. That
method involves summing over repetitions of periodic orbits and showing that the result
is quasiclassically the logarithmic derivative of a ‘zeta function’ expressed as an infinite
product. Many special tricks were invented by AF to carry through this calculation for the
Wigner function.

For completeness, we have shown that formula (50) of this paper is equivalent to that
of AF (see (81) and (82)). The difference is that AF used Berry–Keating’s version of
resurgence which leads to a smooth cut-off of the contributions rather than a sharp cut-off
at lengthN . We could have obtained that version by our method, as well, since we can
show that the appropriate objects in (50) have the analyticity and functional requirements
of Berry–Keating. However, this method does not explicitly show how the orbits of length
N conspire to combine into contributions of orbits of length 0. For this pedagogical reason,
we have chosen this version of resurgence in this paper.
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Appendix. Formula for Up
n in terms of primitive periodic orbits

In this appendix an expression forU
p
n of (80) is derived. For this purpose the sum over

repetitionsap is explicitly performed. The derivation relies on the one of AF [12] and, in
particular, on appendix C there. The derivation starts with the expansion of (65) in the form
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(AF, equation (3.18)):

Wap
= −4π iA(x, E)

∞∑
k=0

g(k)(bp)t
ap

p x
kap

p ebp (A1)

where (AF, equation (3.19))

bp = bp(x) = i

h̄
X̃RpX (A2)

and (AF, equation (3.20))

g(k)(bp) =
k∑

l=0

(−1)k−lf (l)
p (A3)

while (AF, equation (3.17))

f (l)
p = e− i

h̄
X̃RpX 1

l!

(
∂

∂z

)l

e
i
h̄

1−z
1+z

X̃RpX

∣∣∣∣
z=0

. (A4)

The matrixRp is defined by the equation (AF, equation (3.13))

Yj = X̃J
M

ap

p − I

M
ap

p + I
X = tanh

(upap

2

)
X̃Rp(x)X (A5)

where tp = e
i
h̄
Sp− 1

2 up and xp = e−up , while the Maslov index was absorbed in the action.
Both Rp andbp depend only on the primitive orbit and not on its repetitions.

The above, rather complicated, formulation was found necessary to be able to sum over
the orbit repetitions,ap, contained in the factor e

i
h̄
Yj . The expansion of this factor is not

necessary if the methods of the present paper are used.
In order to calculate the sum (80) we first expand (see AF, equations (2.7) and (C.3))

Cµe
i
h̄
Sµ =

∏
p

dmp
(xp)(−tp)mp (A6)

where the{mp} are related toµ by (68), while (AF, equation (C.2))

dm(x) =
∑

j1>j2>···>jm

xj1+j2+···+jm = xm(m−3)/4

(x−1/2 − x1/2)(x−1 − x1) · · · (x−m/2 − xm/2)
(A7)

with d0(x) = 1. This result was based on the zeta function formula of Voros [5]

D(E) = det(1 − λT ) =
∏
p

∏
mp

(1 − λLp tpx
mp

p ) . (A8)

The product overmp is done by the Euler product formula.
The sum (80) takes the form

Up
n =

∑
ap

∑
µ(n−r)

∏
q

dmq
(xq)(−tq)

mq Wap
(A9)

wherer is given by (78) and the{mq} are related toµ(n − r) by (68) and (73). The first
term in the sum overap is ap = 1, which corresponds to the integerrp = Lp − 1. The
corresponding composite orbit is

µ(n − rp) = {n̄1, n̄2, n̄3, . . . , n̄p − 1, . . .} . (A10)

In general, the sum over composite orbits contains terms of the form

µ(n − r) = {n̄1, n̄2, n̄3, . . . , n̄p − ap, . . .} (A11)
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where

µ(n + 1) = {n̄1, n̄2, n̄3, . . . , n̄p, . . .} . (A12)

Note that all the sums forUp
n include only composite orbits wherenp varies and all the

otherni = n̄i are fixed. With the help of (A1) and (A6) the sum (A9) takes the form

Up
n = −4π iA(x, E)

∑
µ(n+1)

∞∑
k=0

C̄(p,k)
µ g(k)(bp)ebp (A13)

where

C̄(p,k)
µ =

∏
q 6=p

[dn̄q
(xq)(−tq)

n̄q ]d̃(p,k) (A14)

and

d̃(p,k) =
n̄p∑

ap=1

dn̄p−ap
(xp)(−tp)n̄p−ap t

ap

p xkap . (A15)

Following AF it is useful to introduce (AF, equation (C.4))

d(k)
m (x) =

∑
j1>j2>···>jm

j1,j2,···jm 6=k

xj1+j2+···+jm (A16)

that satisfy (AF, equation (C.9))

d(k)
m (x) =

m∑
j=0

(−1)j xjkdm−j (x) . (A17)

With the help of this equation one finds that

d̃(p,k) = tp(−tp)n̄
′
pxk

pd
(k)
n̄′

p
(xp) (A18)

wheren̄′
p = n̄p − 1. With the help of (C.11) of AF one finds

C̄(p,k)
µ =

∏
q 6=p

dnq
(xq)(−tq)

n̄q (−tq)
n̄′

p tpxk
pd

(k)
n̄′

p
(xp) = c

(p,k)

µ(n+1)e
i
h̄
(Sµ+Sp) (A19)

wherec
(p,k)
µ are defined in AF, equations (C.11) and (3.29). Substitution in (A13 ) yields

the final result

Up
n = −4π iA(x, E)

∑
µ(n+1)

∞∑
k=0

c(p,k)
µ g(k)(bp)e

i
h̄
(Sµ+Sp)ebp . (A20)
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